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Preface

Introduction

With the ever increasing amounts of data in electronic form, the need for automated methods
for data analysis continues to grow. The goal of machine learning is to develop methods that
can automatically detect patterns in data, and then to use the uncovered patterns to predict
future data or other outcomes of interest. Machine learning is thus closely related to the fields
of statistics and data mining, but differs slightly in terms of its emphasis and terminology. This
book provides a detailed introduction to the field, and includes worked examples drawn from
application domains such as molecular biology, text processing, computer vision, and robotics.

Target audience

This book is suitable for upper-level undergraduate students and beginning graduate students

in computer science, statistics, electrical engineering, econometrics, or anyone else who has the
appropriate mathematical background. Specifically, the reader is assumed to already be familiar

with basic multivariate calculus, probability, linear algebra, and computer programming. Prior

exposure to statistics is helpful but not necessary.

A probabilistic approach

This books adopts the view that the best way to make machines that can learn from data is to

use the tools of probability theory, which has been the mainstay of statistics and engineering for

centuries. Probability theory can be applied to any problem involving uncertainty. In machine

learning, uncertainty comes in many forms: what is the best prediction (or decision) given some

data? what is the best model given some data? what measurement should I perform next? etc.

The systematic application of probabilistic reasoning to all inferential problems, including

inferring parameters of statistical models, is sometimes called a Bayesian approach. However,

this term tends to elicit very strong reactions (either positive or negative, depending on who

you ask), so we prefer the more neutral term "probabilistic approach". Besides, we will often

use techniques such as maximum likelihood estimation, which are not Bayesian methods, but

certainly fall within the probabilistic paradigm.

Rather than describing a cookbook of different heuristic methods, this book stresses a princi-

pled model-based approach to machine learning. For any given model, a variety of algorithms
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can often be applied. Conversely, any given algorithm can often be applied to a variety of

models. This kind of modularity, where we distinguish model from algorithm, is good pedagogy

and good engineering.

We will often use the language of graphical models to specify our models in a concise and

intuitive way. In addition to aiding comprehension, the graph structure aids in developing

efficient algorithms, as we will see. However, this book is not primarily about graphical models;

it is about probabilistic modeling in general.

A practical approach

Nearly all of the methods described in this book have been implemented in a MATLAB software

package called PMTK, which stands for probabilistic modeling toolkit. This is freely available

from pmtk3.googIecode.com (the digit 3 refers to the third edition of the toolkit, which is the

one used in this version of the book). There are also a variety of supporting files, written by other

people, available at pmtksupport.googlecode.com. These will be downloaded automatically,

if you follow the setup instructions described on the PMTK website.

MATLAB is a high-level, interactive scripting language ideally suited to numerical computation

and data visualization, and can be purchased from vww.mathworks.com. Some of the code

requires the Statistics toolbox, which needs to be purchased separately. There is also a free

version of Matlab called Octave, available at http://www.gnu.org/software/octave/, which

supports most of the functionality of MATLAB. Some (but not all) of the code in this book also

works in Octave. See the PMTK website for details.

PMTK was used to generate many of the figures in this book; the source code for these figures

is included on the PMTK website, allowing the reader to easily see the effects of changing the

data or algorithm or parameter settings. The book refers to files by name, e.g., naiveBayesFit.

In order to find the corresponding file, you can use two methods: within Matlab you can type

which naiveBayesFit and it will return the full path to the file; or, if you do not have Matlab

but want to read the source code anyway, you can use your favorite search engine, which should

return the corresponding file from the pmtk3.goog1ecode.com website.

Details on how to use PMTK can be found on its website. Details on the underlying theory

behind these methods can be found in this book.
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