> | neivach |
| :---: |
| $02-07$ |
| 01039 |

Machine Learning
 A Probabilistic Perspective

Kevin P. Murphy

The MIT Press
Cambridge, Massachusetts
London, England

Contents

Preface xxvii
1 Introduction 1
1.1 Machine learning: what and why? 1
1.1.1 Types of machine learning 2
1.2 Supervised learning 3
1.2.1 Classification 3
1.2.2 Regression 8
1.3 Unsupervised learning 9
1.3.1 Discovering clusters 10
1.3.2 Discovering latent factors 11
1.3.3 Discovering graph structure 13
1.3.4 Matrix completion 14
1.4 Some basic concepts in machine learning 16
1.4.1 Parametric vs non-parametric models 16
1.4.2 A simple non-parametric classifier: K-nearest neighbors 16
1.4.3 The curse of dimensionality 18
1.4.4 Parametric models for classification and regression 19
1.4.5 Linear regression 19
1.4.6 Logistic regression 21
1.4.7 Overfitting 22
1.4.8 Model selection 22
1.4.9 No free lunch theorem 24
2 Probability 27
2.1 Introduction 27
2.2 A brief review of probability theory 28
2.2.1 Discrete random variables 28
2.2.2 Fundamental rules 29
2.2.3 Bayes' rule 29
2.2.4 Independence and conditional independence 31
2.2.5 Continuous random variables 32
2.2.6 Quantiles 33
2.2.7 Mean and variance 33
2.3 Some common discrete distributions 34
2.3.1 The binomial and Bernoulli distributions 34
2.3.2 The multinomial and multinoulli distributions 35
2.3.3 The Poisson distribution 37
2.3.4 The empirical distribution 37
2.4 Some common continuous distributions 38
2.4.1 Gaussian (normal) distribution 38
2.4.2 Degenerate pdf 39
2.4.3 The Student's t distribution 39
2.4.4 The Laplace distribution 41
2.4.5 The gamma distribution 41
2.4.6 The beta distribution 43
2.4.7 Pareto distribution 43
2.5 Joint probability distributions 44
2.5.1 Covariance and correlation 45
2.5.2 The multivariate Gaussian 46
2.5.3 Multivariate Student t distribution 47
2.5.4 Dirichlet distribution 49
2.6 Transformations of random variables 49
2.6.1 Linear transformations 49
2.6.2 General transformations 50
2.6.3 Central limit theorem 52
2.7 Monte Carlo approximation 53
2.7.1 Example: change of variables, the MC way 53
2.7.2 Example: estimating π by Monte Carlo integration 54
2.7.3 Accuracy of Monte Carlo approximation 54
2.8 Information theory 56
2.8.1 Entropy 57
2.8.2 KL divergence 58
2.8.3 Mutual information 59
3 Generative models for discrete data 67
3.1 Introduction 67
3.2 Bayesian concept learning 67
3.2.1 Likelihood 69
3.2.2 Prior 69
3.2.3 Posterior 70
3.2.4 Posterior predictive distribution 73
3.2.5 A more complex prior 74
3.3 The beta-binomial model 74
3.3.1 Likelihood 75
3.3.2 Prior 76
3.3.3 Posterior 77
3.3.4 Posterior predictive distribution 79
3.4 The Dirichlet-multinomial model 80
3.4.1 Likelihood 81
3.4.2 Prior 81
3.4.3 Posterior 81
3.4.4 Posterior predictive 83
3.5 Naive Bayes classifiers 84
3.5.1 Model fitting 85
3.5.2 Using the model for prediction 87
3.5.3 The log-sum-exp trick 88
3.5.4 Feature selection using mutual information 89
3.5.5 Classifying documents using bag of words 90
4 Gaussian models 99
4.1 Introduction 99
4.1.1 Notation 99
4.1.2 Basics 99
4.1.3 MLE for an MVN 101
4.1.4 Maximum entropy derivation of the Gaussian * 103
4.2 Gaussian discriminant analysis 103
4.2.1 Quadratic discriminant analysis (QDA) 104
4.2.2 Linear discriminant analysis (LDA) 105
4.2.3 Two-class LDA 106
4.2.4 MLE for discriminant analysis 108
4.2.5 Strategies for preventing overfitting 108
4.2.6 Regularized LDA * 109
4.2.7 Diagonal LDA 110
4.2.8 Nearest shrunken centroids classifier * 111
4.3 Inference in jointly Gaussian distributions 112
4.3.1 Statement of the result 113
4.3.2 Examples 113
4.3.3 Information form 117
4.3.4 Proof of the result * 118
4.4 Linear Gaussian systems 121
4.4.1 Statement of the result 122
4.4.2 Examples 122
4.4.3 Proof of the result * 127
4.5 Digression: The Wishart distribution * 128
4.5.1 Inverse Wishart distribution 129
4.5.2 Visualizing the Wishart distribution * 129
4.6 Inferring the parameters of an MVN 129
4.6.1 Posterior distribution of $\boldsymbol{\mu}$ 130
4.6.2 Posterior distribution of $\boldsymbol{\Sigma}$ * 131
4.6.3 Posterior distribution of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ * 134
4.6.4 Sensor fusion with unknown precisions * 140
5 Bayesian statistics 151
5.1 Introduction 151
5.2 Summarizing posterior distributions 151
5.2.1 MAP estimation 151
5.2.2 Credible intervals 154
5.2.3 Inference for a difference in proportions 156
5.3 Bayesian model selection 157
5.3.1 Bayesian Occam's razor 158
5.3.2 Computing the marginal likelihood (evidence) 160
5.3.3 Bayes factors 165
5.3.4 Jeffreys-Lindley paradox * 166
5.4 Priors 167
5.4.1 Uninformative priors 167
5.4.2 Jeffreys priors * 168
5.4.3 Robust priors 170
5.4.4 Mixtures of conjugate priors 171
5.5 Hierarchical Bayes 173
5.5.1 Example: modeling related cancer rates 173
5.6 Empirical Bayes 174
5.6.1 Example: beta-binomial model 175
5.6.2 Example: Gaussian-Gaussian model 176
5.7 Bayesian decision theory 178
5.7.1 Bayes estimators for common loss functions 179
5.7.2 The false positive vs false negative tradeoff 182
5.7.3 Other topics * 186
6 Frequentist statistics 193
6.1 Introduction 193
6.2 Sampling distribution of an estimator 193
6.2.1 Bootstrap 194
6.2.2 Large sample theory for the MLE * 195
6.3 Frequentist decision theory 197
6.3.1 Bayes risk 197
6.3.2 Minimax risk 198
6.3.3 Admissible estimators 199
6.4 Desirable properties of estimators 202
6.4.1 Consistent estimators 202
6.4.2 Unbiased estimators 203
6.4.3 Minimum variance estimators 203
6.4.4 The bias-variance tradeoff 204
6.5 Empirical risk minimization 207
6.5.1 Regularized risk minimization 208
6.5.2 Structural risk minimization 208
6.5.3 Estimating the risk using cross validation 209
6.5.4 Upper bounding the risk using statistical learning theory * 211
6.5.5 Surrogate loss functions 213
6.6 Pathologies of frequentist statistics * 214
6.6.1 Counter-intuitive behavior of confidence intervals 214
6.6.2 p-values considered harmful 215
6.6.3 The likelihood principle 217
6.6.4 Why isn't everyone a Bayesian? 217
7 Linear regression 219
7.1 Introduction 219
7.2 Model specification 219
7.3 Maximum likelihood estimation (least squares) 219
7.3.1 Derivation of the MLE 221
7.3.2 Geometric interpretation 222
7.3.3 Convexity 223
7.4 Robust linear regression * 225
7.5 Ridge regression 227
7.5.1 Basic idea 227
7.5.2 Numerically stable computation * 229
7.5.3 Connection with PCA * 230
7.5.4 Regularization effects of big data 232
7.6 Bayesian linear regression 233
7.6.1 Computing the posterior 234
7.6.2 Computing the posterior predictive 235
7.6.3 Bayesian inference when σ^{2} is unknown * 236
7.6.4 EB for linear regression (evidence procedure) 240
8 Logistic regression 247
8.1 Introduction 247
8.2 Model specification 247
8.3 Model fitting 248
8.3.1 MLE 249
8.3.2 Steepest descent 249
8.3.3 Newton's method 251
8.3.4 Iteratively reweighted least squares (IRLS) 253
8.3.5 Quasi-Newton (variable metric) methods 253
8.3.6 $\quad \ell_{2}$ regularization 254
8.3.7 Multi-class logistic regression 255
8.4 Bayesian logistic regression 257
8.4.1 Laplace approximation 257
8.4.2 Derivation of the Bayesian information criterion (BIC) 258
8.4.3 Gaussian approximation for logistic regression 258
8.4.4 Approximating the posterior predictive 260
8.4.5 Residual analysis (outlier detection) 263
8.5 Online learning and stochastic optimization 264
8.5.1 Online learning and regret minimization 264
8.5.2 Stochastic optimization and risk minimization 265
8.5.3 The LMS algorithm 267
8.5.4 The perceptron algorithm 268
8.5.5 A Bayesian view 270
8.6 Generative vs discriminative classifiers 270
8.6.1 Pros and cons of each approach 271
8.6.2 Dealing with missing data 271
8.6.3 Fisher's linear discriminant analysis (FLDA) * 274
9 Generalized linear models and the exponential family 283
9.1 Introduction 283
9.2 The exponential family 283
9.2.1 Definition 284
9.2.2 Examples 284
9.2.3 Log partition function 286
9.2.4 MLE for the exponential family 288
9.2.5 Bayes for the exponential family * 289
9.2.6 Maximum entropy derivation of the exponential family * 291
9.3 Generalized linear models (GLMs) 292
9.3.1 Basics 292
9.3.2 ML and MAP estimation 294
9.3.3 Bayesian inference 295
9.4 Probit regression 295
9.4.1 ML/MAP estimation using gradient-based optimization 296
9.4.2 Latent variable interpretation 296
9.4.3 Ordinal probit regression 297
9.4.4 Multinomial probit models * 297
9.5 Multi-task learning 298
9.5.1 Hierarchical Bayes for multi-task learning 298
9.5.2 Application to personalized email spam filtering 298
9.5.3 Application to domain adaptation 299
9.5.4 Other kinds of prior 299
9.6 Generalized linear mixed models * 300
9.6.1 Example: semi-parametric GLMMs for medical data 300
9.6.2 Computational issues 302
9.7 Learning to rank 302
9.7.1 The pointwise approach 303
9.7.2 The pairwise approach 303
9.7.3 The listwise approach 304
9.7.4 Loss functions for ranking 305
10 Directed graphical models (Bayes nets) 309
10.1 Introduction 309
10.1.1 Chain rule 309
10.1.2 Conditional independence 310
10.1.3 Graphical models 310
10.1.4 Graph terminology 311
10.1.5 Directed graphical models 312
10.2 Examples 313
10.2.1 Naive Bayes classifiers 313
10.2.2 Markov and hidden Markov models 314
10.2.3 Medical diagnosis 315
10.2.4 Genetic linkage analysis * 317
10.2.5 Directed Gaussian graphical models * 320
10.3 Inference 321
10.4 Learning 322
10.4.1 Plate notation 322
10.4.2 Learning from complete data 324
10.4.3 Learning with missing and/or latent variables 325
10.5 Conditional independence properties of DGMs 326
10.5.1 d-separation and the Bayes Ball algorithm (global Markov properties) 326
10.5.2 Other Markov properties of DGMs 329
10.5.3 Markov blanket and full conditionals 329
10.6 Influence (decision) diagrams * 330
11 Mixture models and the EM algorithm 339
11.1 Latent variable models 339
11.2 Mixture models 339
11.2.1 Mixtures of Gaussians 341
11.2.2 Mixture of multinoullis 342
11.2.3 Using mixture models for clustering 342
11.2.4 Mixtures of experts 344
11.3 Parameter estimation for mixture models 347
11.3.1 Unidentifiability 348
11.3.2 Computing a MAP estimate is non-convex 349
11.4 The EM algorithm 350
11.4.1 Basic idea 351
11.4.2 EM for GMMs 352
11.4.3 EM for mixture of experts 359
11.4.4 EM for DGMs with hidden variables 360
11.4.5 EM for the Student distribution * 361
11.4.6 EM for probit regression 364
11.4.7 Theoretical basis for EM * 365
11.4.8 Online EM 367
11.4.9 Other EM variants * 369
11.5 Model selection for latent variable models 372
11.5.1 Model selection for probabilistic models 372
11.5.2 Model selection for non-probabilistic methods 372
11.6 Fitting models with missing data 374
11.6.1 EM for the MLE of an MVN with missing data 375
12 Latent linear models 383
12.1 Factor analysis 383
12.1.1 FA is a low rank parameterization of an MVN 383
12.1.2 Inference of the latent factors 384
12.1.3 Unidentifiability 386
12.1.4 Mixtures of factor analysers 387
12.1.5 EM for factor analysis models 388
12.1. Fitting FA models with missing data 389
12.2 Principal components analysis (PCA) 389
12.2.1 Classical PCA: statement of the theorem 390
12.2.2 Proof * 392
12.2.3 Singular value decomposition (SVD) 394
12.2.4 Probabilistic PCA 397
12.2.5 EM algorithm for PCA 398
12.3 Choosing the number of latent dimensions 400
12.3.1 Model selection for FA/PPCA 400
12.3.2 Model selection for PCA 401
12.4 PCA for categorical data 404
12.5 PCA for paired and multi-view data 406
12.5.1 Supervised PCA (latent factor regression) 406
12.5.2 Partial least squares 408
12.5.3 Canonical correlation analysis 409
12.6 Independent Component Analysis (ICA) 409
12.6.1 Maximum likelihood estimation 412
12.6.2 The FastICA algorithm 413
12.6.3 Using EM 416
12.6.4 Other estimation principles * 417
13 Sparse linear models 423
13.1 Introduction 423
13.2 Bayesian variable selection 424
13.2.1 The spike and slab model 426
13.2.2 From the Bernoulli-Gaussian model to ℓ_{0} regularization 428
13.2.3 Algorithms 429
$13.3 \quad \ell_{1}$ regularization: basics 431
13.3.1 Why does ℓ_{1} regularization yield sparse solutions? 432
13.3.2 Optimality conditions for lasso 434
13.3.3 Comparison of least squares, lasso, ridge and subset selection 437
13.3.4 Regularization path 438
13.3.5 Model selection 441
13.3.6 Bayesian inference for linear models with Laplace priors 442
$13.4 \quad \ell_{1}$ regularization: algorithms 443
13.4.1 Coordinate descent 443
13.4.2 LARS and other homotopy methods 443
13.4.3 Proximal and gradient projection methods 444
13.4.4 EM for lasso 448
$13.5 \quad \ell_{1}$ regularization: extensions 451
13.5.1 Group lasso 451
13.5.2 Fused lasso 456
13.5.3 Elastic net (ridge and lasso combined) 457
13.6 Non-convex regularizers 459
13.6.1 Bridge regression 460
13.6.2 Hierarchical adaptive lasso 460
13.6.3 Other hierarchical priors 464
13.7 Automatic relevance determination (ARD)/sparse Bayesian learning (SBL) 465
13.7.1 ARD for linear regression 465
13.7.2 Whence sparsity? 467
13.7.3 Connection to MAP estimation 467
13.7.4 Algorithms for ARD * 468
13.7.5 ARD for logistic regression 470
13.8 Sparse coding * 470
13.8.1 Learning a sparse coding dictionary 471
13.8.2 Results of dictionary learning from image patches 472
13.8.3 Compressed sensing 474
13.8.4 Image inpainting and denoising 474
14 Kernels 481
14.1 Introduction 481
14.2 Kernel functions 481
14.2.1 RBF kernels 482
14.2.2 Kernels for comparing documents 482
14.2.3 Mercer (positive definite) kernels 483
14.2.4 Linear kernels 484
14.2.5 Matern kernels 484
14.2.6 String kernels 485
14.2.7 Pyramid match kernels 486
14.2.8 Kernels derived from probabilistic generative models 487
14.3 Using kernels inside GLMs 488
14.3.1 Kernel machines 488
14.3.2 LIVMs, RVMs, and other sparse vector machines 489
14.4 The kernel trick 490
14.4.1 Kernelized nearest neighbor classification 491
14.4.2 Kernelized K-medoids clustering 492
14.4.3 Kernelized ridge regression 494
14.4.4 Kernel PCA 495
14.5 Support vector machines (SVMs) 498
14.5.1 SVMs for regression 499
14.5.2 SVMs for classification 500
14.5.3 Choosing C 506
14.5.4 Summary of key points 506
14.5.5 A probabilistic interpretation of SVMs 507
14.6 Comparison of discriminative kernel methods 507
14.7 Kernels for building generative models 509
14.7.1 Smoothing kernels 509
14.7.2 Kernel density estimation (KDE) 510
14.7.3 From KDE to KNN 511
14.7.4 Kernel regression 512
14.7.5 Locally weighted regression 514
15 Gaussian processes 517
15.1 Introduction 517
15.2 GPs for regression 518
15.2.1 Predictions using noise-free observations 519
15.2.2 Predictions using noisy observations 520
15.2.3 Effect of the kernel parameters 521
15.2.4 Estimating the kernel parameters 523
15.2.5 Computational and numerical issues * 526
15.2.6 Semi-parametric GPs * 526
15.3 GPs meet GLMs 527
15.3.1 Binary classification 527
15.3.2 Multi-class classification 530
15.3.3 GPs for Poisson regression 533
15.4 Connection with other methods 534
15.4.1 Linear models compared to GPs 534
15.4.2 Linear smoothers compared to GPs 535
15.4.3 SVMs compared to GPs 536
15.4.4 LIVM and RVMs compared to GPs 536
15.4.5 Neural networks compared to GPs 537
15.4.6 Smoothing splines compared to GPs * 538
15.4.7 RKHS methods compared to GPs * 540
15.5 GP latent variable model 542
15.6 Approximation methods for large datasets 544
16 Adaptive basis function models 545
16.1 Introduction 545
16.2 Classification and regression trees (CART) 546
16.2.1 Basics 546
16.2.2 Growing a tree 547
16.2.3 Pruning a tree 551
16.2.4 Pros and cons of trees 552
16.2.5 Random forests 552
16.2.6 CART compared to hierarchical mixture of experts * 553
16.3 Generalized additive models 554
16.3.1 Backfitting 554
16.3.2 Computational efficiency 555
16.3.3 Multivariate adaptive regression splines (MARS) 555
16.4 Boosting 556
16.4.1 Forward stagewise additive modeling 557
16.4.2 L2boosting 559
16.4.3 AdaBoost 560
16.4.4 LogitBoost 561
16.4.5 Boosting as functional gradient descent 562
16.4.6 Sparse boosting 563
16.4.7 Multivariate adaptive regression trees (MART) 564
16.4.8 Why does boosting work so well? 564
16.4.9 A Bayesian view 565
16.5 Feedforward neural networks (multilayer perceptrons) 565
16.5.1 Convolutional neural networks 566
16.5.2 Other kinds of neural networks 570
16.5.3 A brief history of the field 571
16.5.4 The backpropagation algorithm 572
16.5.5 Identifiability 574
16.5.6 Regularization 574
16.5.7 Bayesian inference * 578
16.6 Ensemble learning 582
16.6.1 Stacking 582
16.6.2 Error-correcting output codes 583
16.6.3 Ensemble learning is not equivalent to Bayes model averaging 583
16.7 Experimental comparison 584
16.7.1 Low-dimensional features 584
16.7.2 High-dimensional features 585
16.8 Interpreting black-box models 587
17 Markov and hidden Markov models 591
17.1 Introduction 591
17.2 Markov models 591
17.2.1 Transition matrix 591
17.2.2 Application: Language modeling 593
17.2.3 Stationary distribution of a Markov chain * 598
17.2.4 Application: Google's PageRank algorithm for web page ranking * 602
17.3 Hidden Markov models 606
17.3.1 Applications of HMMs 606
17.4 Inference in HMMs 608
17.4.1 Types of inference problems for temporal models 608
17.4.2 The forwards algorithm 611
17.4.3 The forwards-backwards algorithm 612
17.4.4 The Viterbi algorithm 614
17.4.5 Forwards filtering, backwards sampling 619
17.5 Learning for HMMs 619
17.5.1 Training with fully observed data 620
17.5.2 EM for HMMs (the Baum-Welch algorithm) 620
17.5.3 Bayesian methods for "fitting" HMMs * 622
17.5.4 Discriminative training 623
17.5.5 Model selection 623
17.6 Generalizations of HMMs 624
17.6.1 Variable duration (semi-Markov) HMMs 624
17.6.2 Hierarchical HMMs 626
17.6.3 Input-output HMMs 628
17.6.4 Auto-regressive and buried HMMs 628
17.6.5 Factorial HMM 629
17.6.6 Coupled HMM and the influence model 630
17.6.7 Dynamic Bayesian networks (DBNs) 631
18 State space models 633
18.1 Introduction 633
18.2 Applications of SSMs 634
18.2.1 SSMs for object tracking 634
18.2.2 Robotic SLAM 635
18.2.3 Online parameter learning using recursive least squares 638
18.2.4 SSM for time series forecasting * 639
18.3 Inference in LG-SSM 642
18.3.1 The Kalman filtering algorithm 642
18.3.2 The Kalman smoothing algorithm 645
18.4 Learning for LG-SSM 648
18.4.1 Identifiability and numerical stability 648
18.4.2 Training with fully observed data 649
18.4.3 EM for LG-SSM 649
18.4.4 Subspace methods 649
18.4.5 Bayesian methods for "fitting" LG-SSMs 649
18.5 Approximate online inference for non-linear, non-Gaussian SSMs 649
18.5.1 Extended Kalman filter (EKF) 650
18.5.2 Unscented Kalman filter (UKF) 652
18.5.3 Assumed density filtering (ADF) 654
18.6 Hybrid discrete/continuous SSMs 657
18.6.1 Inference 658
18.6.2 Application: data association and multi-target tracking 660
18.6.3 Application: fault diagnosis 661
18.6.4 Application: econometric forecasting 662
19 Undirected graphical models (Markov random fields) 663
19.1 Introduction 663
19.2 Conditional independence properties of UGMs 663
19.2. \quad Key properties 663
19.2.2 An undirected alternative to d-separation 665
19.2.3 Comparing directed and undirected graphical models 666
19.3 Parameterization of MRFs 667
19.3.1 The Hammersley-Clifford theorem 667
19.3.2 Representing potential functions 669
19.4 Examples of MRFs 670
19.4.1 Ising model 670
19.4.2 Hopfield networks 671
19.4.3 Potts model 673
19.4.4 Gaussian MRFs 674
19.4.5 Markov logic networks * 676
19.5 Learning 678
19.5.1 Training maxent models using gradient methods 678
19.5.2 Training partially observed maxent models 679
19.5.3 Approximate methods for computing the MLEs of MRFs 680
19.5.4 Pseudo likelihood 680
19.5.5 Stochastic maximum likelihood 682
19.5.6 Feature induction for maxent models * 682
19.5.7 Iterative proportional fitting (IPF) * 684
19.6 Conditional random fields (CRFs) 686
19.6.1 Chain-structured CRFs, MEMMs and the label-bias problem 687
19.6.2 Applications of CRFs 688
19.6.3 CRF training 694
19.7 Structural SVMs 696
19.7.1 SSVMs: a probabilistic view 696
19.7.2 SSVMs: a non-probabilistic view 698
19.7.3 Cutting plane methods for fitting SSVMs 700
19.7.4 Online algorithms for fitting SSVMs 703
19.7.5 Latent structural SVMs 704
20 Exact inference for graphical models 709
20.1 Introduction 709
20.2 Belief propagation for trees 709
20.2.1 Serial protocol 709
20.2.2 Parallel protocol 711
20.2.3 Gaussian belief propagation * 712
20.2.4 Other BP variants * 714
20.3 The variable elimination algorithm 716
20.3.1 The generalized distributive law * 719
20.3.2 Computational complexity of VE 719
20.3.3 A weakness of VE 722
20.4 The junction tree algorithm * 722
20.4.1 Creating a junction tree 722
20.4.2 Message passing on a junction tree 724
20.4.3 Computational complexity of JTA 727
20.4.4 JTA generalizations * 728
20.5 Computational intractability of exact inference in the worst case 728
20.5.1 Approximate inference 729
21 Variational inference 733
21.1 Introduction 733
21.2 Variational inference 733
21.2.1 Alternative interpretations of the variational objective 735
21.2.2 Forward or reverse KL? * 735
21.3 The mean field method 737
21.3.1 Derivation of the mean field update equations 738
21.3.2 Example: mean field for the Ising model 739
21.4 Structured mean field * 741
21.4.1 Example: factorial HMM 742
21.5 Variational Bayes 744
21.5.1 Example: VB for a univariate Gaussian 744
21.5.2 Example: VB for linear regression 748
21.6 Variational Bayes EM 751
21.6.1 Example: VBEM for mixtures of Gaussians * 752
21.7 Variational message passing and VIBES 758
21.8 Local variational bounds * 758
21.8.1 Motivating applications 758
21.8.2 Bohning's quadratic bound to the log-sum-exp function 760
21.8.3 Bounds for the sigmoid function 762
21.8.4 Other bounds and approximations to the log-sum-exp function * 764
21.8.5 Variational inference based on upper bounds 765
22 More variational inference 769
22.1 Introduction 769
22.2 Loopy belief propagation: algorithmic issues 769
22.2.1 A brief history 769
22.2.2 LBP on pairwise models 770
22.2.3 LBP on a factor graph 771
22.2.4 Convergence 773
22.2.5 Accuracy of LBP 776
22.2.6 Other speedup tricks for LBP * 777
22.3 Loopy belief propagation: theoretical issues * 778
22.3.1 UGMs represented in exponential family form 778
22.3.2 The marginal polytope 779
22.3.3 Exact inference as a variational optimization problem 780
22.3.4 Mean field as a variational optimization problem 781
22.3.5 LBP as a variational optimization problem 781
22.3.6 Loopy BP vs mean field 785
22.4 Extensions of belief propagation * 785
22.4.1 Generalized belief propagation 785
22.4.2 Convex belief propagation 787
22.5 Expectation propagation 789
22.5.1 EP as a variational inference problem 790
22.5.2 Optimizing the EP objective using moment matching 791
22.5.3 EP for the clutter problem 793
22.5.4 LBP is a special case of EP 794
22.5.5 Ranking players using TrueSkill 795
22.5.6 Other applications of EP 801
22.6 MAP state estimation 801
22.6.1 Linear programming relaxation 801
22.6.2 Max-product belief propagation 802
22.6.3 Graphcuts 803
22.6.4 Experimental comparison of graphcuts and BP 806
22.6.5 Dual decomposition 808
23 Monte Carlo inference 817
23.1 Introduction 817
23.2 Sampling from standard distributions 817
23.2.1 Using the cdf 817
23.2.2 Sampling from a Gaussian (Box-Muller method) 819
23.3 Rejection sampling 819
23.3.1 Basic idea 819
23.3.2 Example 820
23.3.3 Application to Bayesian statistics 821
23.3.4 Adaptive rejection sampling 821
23.3.5 Rejection sampling in high dimensions 822
23.4 Importance sampling 822
23.4.1 Basic idea 822
23.4.2 Handling unnormalized distributions 823
23.4.3 Importance sampling for a DGM: likelihood weighting 824
23.4.4 Sampling importance resampling (SIR) 825
23.5 Particle filtering 825
23.5.1 Sequential importance sampling 826
23.5.2 The degeneracy problem 827
23.5.3 The resampling step 827
23.5.4 The proposal distribution 829
23.5.5 Application: robot localization 830
23.5.6 Application: visual object tracking 830
23.5.7 Application: time series forecasting 833
23.6 Rao-Blackwellised particle filtering (RBPF) 833
23.6.1 RBPF for switching LG-SSMs 833
23.6.2 Application: tracking a maneuvering target 834
23.6.3 Application: Fast SLAM 836
24 Markov chain Monte Carlo (MCMC) inference 839
24.1 Introduction 839
24.2 Gibbs sampling 840
24.2.1 Basic idea 840
24.2.2 Example: Gibbs sampling for the Ising model 840
24.2.3 Example: Gibbs sampling for inferring the parameters of a GMM 842
24.2.4 Collapsed Gibbs sampling * 843
24.2.5 Gibbs sampling for hierarchical GLMs 846
24.2.6 BUGS and JAGS 848
24.2.7 The Imputation Posterior (IP) algorithm 849
24.2.8 Blocking Gibbs sampling 849
24.3 Metropolis Hastings algorithm 850
24.3.1 Basic idea 850
24.3.2 Gibbs sampling is a special case of MH 851
24.3.3 Proposal distributions 852
24.3.4 Adaptive MCMC 855
24.3.5 Initialization and mode hopping 856
24.3.6 Why MH works * 856
24.3.7 Reversible jump (trans-dimensional) MCMC * 857
24.4 Speed and accuracy of MCMC 858
24.4.1 The burn-in phase 858
24.4.2 Mixing rates of Markov chains * 859
24.4.3 Practical convergence diagnostics 860
24.4.4 Accuracy of MCMC 862
24.4.5 How many chains? 864
24.5 Auxiliary variable MCMC * 865
24.5.1 Auxiliary variable sampling for logistic regression 865
24.5.2 Slice sampling 866
24.5.3 Swendsen Wang 868
24.5.4 Hybrid/Hamiltonian MCMC * 870
24.6 Annealing methods 870
24.6.1 Simulated annealing 871
24.6.2 Annealed importance sampling 873
24.6.3 Parallel tempering 873
24.7 Approximating the marginal likelihood 874
24.7.1 The candidate method 874
24.7.2 Harmonic mean estimate 874
24.7.3 Annealed importance sampling 875
25 Clustering 877
25.1 Introduction 877
25.1.1 Measuring (dis)similarity 877
25.1.2 Evaluating the output of clustering methods * 878
25.2 Dirichlet process mixture models 881
25.2.1 From finite to infinite mixture models 881
25.2.2 The Dirichlet process 884
25.2.3 Applying Dirichlet processes to mixture modeling 887
25.2.4 Fitting a DP mixture model 888
25.3 Affinity propagation 889
25.4 Spectral clustering 892
25.4.1 Graph Laplacian 893
25.4.2 Normalized graph Laplacian 894
25.4.3 Example 895
25.5 Hierarchical clustering 895
25.5.1 Agglomerative clustering 897
25.5.2 Divisive clustering 900
25.5.3 Choosing the number of clusters 901
25.5.4 Bayesian hierarchical clustering 901
25.6 Clustering datapoints and features 903
25.6.1 Biclustering 905
25.6.2 Multi-view clustering 905
26 Graphical model structure learning 909
26.1 Introduction 909
26.2 Structure learning for knowledge discovery 910
26.2.1 Relevance networks 910
26.2.2 Dependency networks 911
26.3 Learning tree structures 912
26.3.1 Directed or undirected tree? 913
26.3.2 Chow-Liu algorithm for finding the ML tree structure 914
26.3.3 Finding the MAP forest 914
26.3.4 Mixtures of trees 916
26.4 Learning DAG structures 916
26.4.1 Markov equivalence 916
26.4.2 Exact structural inference 918
26.4.3 Scaling up to larger graphs 922
26.5 Learning DAG structure with latent variables 924
26.5.1 Approximating the marginal likelihood when we have missing data 924
26.5.2 Structural EM 927
26.5.3 Discovering hidden variables 928
26.5.4 Case study: Google's Rephil 930
26.5.5 Structural equation models * 931
26.6 Learning causal DAGs 933
26.6.1 Causal interpretation of DAGs 933
26.6.2 Using causal DAGs to resolve Simpson's paradox 935
26.6.3 Learning causal DAG structures 938
26.7 Learning undirected Gaussian graphical models 940
26.7.1 MLE for a GGM 940
26.7.2 Graphical lasso 941
26.7.3 Bayesian inference for GGM structure * 943
26.7.4 Handling non-Gaussian data using copulas * 944
26.8 Learning undirected discrete graphical models 944
26.8.1 Graphical lasso for MRFs/CRFs 944
26.8.2 Thin junction trees 945
27 Latent variable models for discrete data 949
27.1 Introduction 949
27.2 Distributed state LVMs for discrete data 950
27.2.1 Mixture models 950
27.2.2 Exponential family PCA 951
27.2.3 LDA and mPCA 952
27.2.4 GaP model and non-negative matrix factorization 953
27.3 Latent Dirichlet allocation (LDA) 954
27.3.1 Basics 954
27.3.2 Unsupervised discovery of topics 957
27.3.3 Quantitatively evaluating LDA as a language model 957
27.3.4 Fitting using (collapsed) Gibbs sampling 959
27.3.5 Example 960
27.3.6 Fitting using batch variational inference 961
27.3.7 Fitting using online variational inference 963
27.3.8 Determining the number of topics 964
27.4 Extensions of LDA 965
27.4.1 Correlated topic model 965
27.4.2 Dynamic topic model 966
27.4.3 LDA-HMM 967
27.4.4 Supervised LDA 971
27.5 LVMs for graph-structured data 974
27.5.1 Stochastic block model 975
27.5.2 Mixed membership stochastic block model 977
27.5.3 Relational topic model 978
27.6 LVMs for relational data 979
27.6.1 Infinite relational model 980
27.6.2 Probabilistic matrix factorization for collaborative filtering 983
27.7 Restricted Boltzmann machines (RBMs) 987
27.7.1 Varieties of RBMs 989
27.7.2 Learning RBMs 991
27.7.3 Applications of RBMs 995
28 Deep learning 999
28.1 Introduction 999
28.2 Deep generative models 999
28.2.1 Deep directed networks 1000
28.2.2 Deep Boltzmann machines 1000
28.2.3 Deep belief networks 1001
28.2.4 Greedy layer-wise learning of DBNs 1002
28.3 Deep neural networks 1003
28.3.1 Deep multi-layer perceptrons 1003
28.3.2 Deep auto-encoders 1004
28.3.3 Stacked denoising auto-encoders 1005
28.4 Applications of deep networks 1005
28.4.1 Handwritten digit classification using DBNs 1005
28.4.2 Data visualization and feature discovery using deep auto-encoders 1006
28.4.3 Information retrieval using deep auto-encoders (semantic hashing) 1007
28.4.4 Learning audio features using ld convolutional DBNs 1008
28.4.5 Learning image features using 2d convolutional DBNs 1009
28.5 Discussion 1010
Notation 1013
Bibliography 1019
Indexes 1051
Index to code 1051
Index to keywords 1054

Preface

Introduction

With the ever increasing amounts of data in electronic form, the need for automated methods for data analysis continues to grow. The goal of machine learning is to develop methods that can automatically detect patterns in data, and then to use the uncovered patterns to predict future data or other outcomes of interest. Machine learning is thus closely related to the fields of statistics and data mining, but differs slightly in terms of its emphasis and terminology. This book provides a detailed introduction to the field, and includes worked examples drawn from application domains such as molecular biology, text processing, computer vision, and robotics.

Target audience

This book is suitable for upper-level undergraduate students and beginning graduate students in computer science, statistics, electrical engineering, econometrics, or anyone else who has the appropriate mathematical background. Specifically, the reader is assumed to already be familiar with basic multivariate calculus, probability, linear algebra, and computer programming. Prior exposure to statistics is helpful but not necessary.

A probabilistic approach

This books adopts the view that the best way to make machines that can learn from data is to use the tools of probability theory, which has been the mainstay of statistics and engineering for centuries. Probability theory can be applied to any problem involving uncertainty. In machine learning, uncertainty comes in many forms: what is the best prediction (or decision) given some data? what is the best model given some data? what measurement should I perform next? etc.

The systematic application of probabilistic reasoning to all inferential problems, including inferring parameters of statistical models, is sometimes called a Bayesian approach. However, this term tends to elicit very strong reactions (either positive or negative, depending on who you ask), so we prefer the more neutral term "probabilistic approach". Besides, we will often use techniques such as maximum likelihood estimation, which are not Bayesian methods, but certainly fall within the probabilistic paradigm.

Rather than describing a cookbook of different heuristic methods, this book stresses a principled model-based approach to machine learning. For any given model, a variety of algorithms
can often be applied. Conversely, any given algorithm can often be applied to a variety of models. This kind of modularity, where we distinguish model from algorithm, is good pedagogy and good engineering.

We will often use the language of graphical models to specify our models in a concise and intuitive way. In addition to aiding comprehension, the graph structure aids in developing efficient algorithms, as we will see. However, this book is not primarily about graphical models; it is about probabilistic modeling in general.

A practical approach

Nearly all of the methods described in this book have been implemented in a MATLAB software package called PMTK, which stands for probabilistic modeling toolkit. This is freely available from pmtk3.googlecode.com (the digit 3 refers to the third edition of the toolkit, which is the one used in this version of the book). There are also a variety of supporting files, written by other people, available at pmtksupport.googlecode.com. These will be downloaded automatically, if you follow the setup instructions described on the PMTK website.
MATLAB is a high-level, interactive scripting language ideally suited to numerical computation and data visualization, and can be purchased from www.mathworks.com. Some of the code requires the Statistics toolbox, which needs to be purchased separately. There is also a free version of Matlab called Octave, available at http://www.gnu.org/software/octave/, which supports most of the functionality of MATLAB. Some (but not all) of the code in this book also works in Octave. See the PMTK website for details.
PMTK was used to generate many of the figures in this book; the source code for these figures is included on the PMTK website, allowing the reader to easily see the effects of changing the data or algorithm or parameter settings. The book refers to files by name, e.g., naiveBayesFit. In order to find the corresponding file, you can use two methods: within Matlab you can type which naiveBayesFit and it will return the full path to the file; or, if you do not have Matlab but want to read the source code anyway, you can use your favorite search engine, which should return the corresponding file from the pmtk3.googlecode.com website.

Details on how to use PMTK can be found on its website. Details on the underlying theory behind these methods can be found in this book.

Acknowledgments

A book this large is obviously a team effort. I would especially like to thank the following people: my wife Margaret, for keeping the home fires burning as I toiled away in my office for the last six years; Matt Dunham, who created many of the figures in this book, and who wrote much of the code in PMTK; Baback Moghaddam (RIP), who gave extremely detailed feedback on every page of an earlier draft of the book; Chris Williams, who also gave very detailed feedback; Cody Severinski and Wei-Lwun Lu, who assisted with figures; generations of UBC students, who gave helpful comments on earlier drafts; Daphne Koller, Nir Friedman, and Chris Manning, for letting me use their latex style files; Stanford University, Google Research and Skyline College for hosting me during part of my sabbatical; and various Canadian funding agencies (NSERC, CRC and CIFAR) who have supported me financially over the years.

In addition, I would like to thank the following people for giving me helpful feedback on
parts of the book, and/or for sharing figures, code, exercises or even (in some cases) text: David Blei, Sebastien Bratieres, Hannes Bretschneider, Greg Corrado, Jutta Degener, Arnaud Doucet, Mario Figueiredo, Nando de Freitas, Mark Girolami, Gabriel Goh, Tom Griffiths, Katherine Heller, Geoff Hinton, Aapo Hyvarinen, Tommi Jaakkola, Mike Jordan, Charles Kemp, Emtiyaz Khan, Bonnie Kirkpatrick, Daphne Koller, Zico Kolter, Honglak Lee, Julien Mairal, Andrew McPherson, Tom Minka, Ian Nabney, Robert Piche, Arthur Pope, Carl Rassmussen, Ryan Rifkin, Ruslan Salakhutdinov, Mark Schmidt, Daniel Selsam, David Sontag, Erik Sudderth, Josh Tenenbaum, Martin Wainwright, Yair Weiss, Kai Yu.

Kevin Patrick Murphy
Palo Alto, California
June 2012

First printing: August 2012
Second printing: November 2012 (same as first)
Third printing: February 2013 (fixed some typos)
Fourth printing: August 2013 (fixed many typos)

