A Probabilistic Perspective

Kevin P. Murphy

TRUCKS CALM	0::3+0	NGHIỆP HÀ NỘI
TRUNG LAM	HIBNO	IT'S THU VIEN
02	-	07
0	103	39

Machine Learning A Probabilistic Perspective

Kevin P. Murphy

The MIT Press Cambridge, Massachusetts London, England

Contents

P	reface	xxvii			
7	T. 4	1			
1	Intro	pauction	1		
	1.1	Machine	learning: what and why? 1		
		1.1.1	Types of machine learning	2	
	1.2	Supervis	ed learning 3		
		1.2.1	Classification 3		
		1.2.2	Regression 8		
	1.3	Unsuper	vised learning 9		
		1.3.1	Discovering clusters 10		
		1.3.2	Discovering latent factors 11	(and similarity)	
		1.3.3	Discovering graph structure	13	
		1.3.4	Matrix completion 14		
	1.4	Some ba	sic concepts in machine learning	g 16	
		1.4.1	Parametric vs non-parametric n	nodels 16	
		1.4.2	A simple non-parametric classif	fier: K-nearest neighbors	16
		1.4.3	The curse of dimensionality	18	
		1.4.4	Parametric models for classifica	tion and regression 1	9
		1.4.5	Linear regression 19		
		1.4.6	Logistic regression 21		
		1.4.7	Overfitting 22		
		1.4.8	Model selection 22		
		1.4.9	No free lunch theorem 24		
-					
2	Probl	ability	27		
	2.1	Introducti	ion 27		
	2.2	A brief re	view of probability theory 2	8	
		2.2.1	Discrete random variables 2	8	
		2.2.2	Fundamental rules 29		
		2.2.3	Bayes' rule 29		
		2.2.4	Independence and conditional i	ndependence 31	
		2.2.5	Continuous random variables	32	

2.2.6 **Ouantiles** 33 Mean and variance 33 2.2.7 Some common discrete distributions 34 2.3 The binomial and Bernoulli distributions 34 2.3.1 35 The multinomial and multinoulli distributions 2.3.2 The Poisson distribution 37 2.3.3 2.3.4 The empirical distribution 37 38 Some common continuous distributions 2.4 38 2.4.1 Gaussian (normal) distribution 2.4.2 Degenerate pdf 39 2.4.3 The Student's t distribution 39 2.4.4 The Laplace distribution 41 2.4.5 The gamma distribution 41 2.4.6 The beta distribution 43 2.4.7 Pareto distribution 43 2.5 Joint probability distributions 44 2.5.1Covariance and correlation 45 2.5.2 The multivariate Gaussian 46 2.5.3 Multivariate Student t distribution 47 2.5.4 Dirichlet distribution 49 2.6 Transformations of random variables 49 2.6.1 Linear transformations 49 2.6.2 General transformations 50 2.6.3 Central limit theorem 52 2.7 53 Monte Carlo approximation 2.7.1 Example: change of variables, the MC way 53 2.7.2 Example: estimating π by Monte Carlo integration 54 54 2.7.3 Accuracy of Monte Carlo approximation 2.8 Information theory 56 57 2.8.1 Entropy KL divergence 58 2.8.2 Mutual information 59 2.8.3 Generative models for discrete data 67 Introduction 67 3.1 67 Bayesian concept learning 3.2 Likelihood 3.2.1 69 Prior 69 3.2.2 3.2.3 Posterior 70 Posterior predictive distribution 3.2.4 73 74 3.2.5 A more complex prior The beta-binomial model 74 3.3 3.3.1 Likelihood 75 3.3.2 Prior 76 Posterior 77 3.3.3

viii

3

	3.3.4	Posterior predictive distribution 79
3.4	The Dir	ichlet-multinomial model 80
	3.4.1	Likelihood 81
	3.4.2	Prior 81
	3.4.3	Posterior 81
	3.4.4	Posterior predictive 83
3.5	Naive B	aves classifiers 84
	3.5.1	Model fitting 85
	3.5.2	Using the model for prediction 87
	3.5.3	The log-sum-exp trick 88
	3.5.4	Feature selection using mutual information 89
	3.5.5	Classifying documents using bag of words 90
Gau	ssian mo	dels 99
4.1	Introdu	action 99
	4.1.1	Notation 99
	4.1.2	Basics 99
	4.1.3	MLE for an MVN 101
	4.1.4	Maximum entropy derivation of the Gaussian *
4.2	Gaussia	an discriminant analysis 103
	4.2.1	Quadratic discriminant analysis (QDA) 104
	4.2.2	Linear discriminant analysis (LDA) 105
	4.2.3	Two-class LDA 106
	4.2.4	MLE for discriminant analysis 108
	4.2.5	Strategies for preventing overfitting 108
	4.2.6	Regularized LDA * 109
	4.2.7	Diagonal LDA 110
	4.2.8	Nearest shrunken centroids classifier * 111
4.3	Inferer	nce in jointly Gaussian distributions 112
	4.3.1	Statement of the result 113
	4.3.2	Examples 113
	4.3.3	Information form 117
	4.3.4	Proof of the result * 118
4.4	Linear	Gaussian systems 121
	4.4.1	Statement of the result 122
	4.4.2	Examples 122
	4.4.3	Proof of the result * 127
4.5	Digres	sion: The Wishart distribution * 128
	4.5.1	Inverse Wishart distribution 129
	4.5.2	Visualizing the Wishart distribution * 129
4.6	Inferri	ng the parameters of an MVN 129
	4.6.1	Posterior distribution of μ 130
	4.6.2	Posterior distribution of Σ * 131
	4.6.3	Posterior distribution of μ and Σ^* 134

103

Posterior distribution of μ and Σ Sensor fusion with unknown precisions * 140 4.6.4

5	Bayes	sian statistics 151		
	5.1	Introduction 151		
	5.2	Summarizing posterior distri	butions 151	
		5.2.1 MAP estimation	151	
		5.2.2 Credible intervals	154	
		5.2.3 Inference for a diff	erence in proportions 156	
	5.3	Bayesian model selection	157	
		5.3.1 Bayesian Occam's 1	razor 158	
		5.3.2 Computing the ma	rginal likelihood (evidence) 160	
		5.3.3 Bayes factors 1	65	
		5.3.4 Jeffreys-Lindley par	radox * 166	
	5.4	Priors 167		
		5.4.1 Uninformative prio	urs 167	
		5.4.2 Jeffreys priors *	168	
		5.4.3 Robust priors	170	
		5.4.4 Mixtures of conjug	ate priors 171	
	5.5	Hierarchical Bayes 173	and priorio in the second	
		5.5.1 Example: modeling	related cancer rates 173	
	5.6	Empirical Bayes 174	A substant of the second s	
	010	5.6.1 Example: beta-bing	omial model 175	
		5.6.2 Example: Gaussian	-Gaussian model 176	
	5.7	Bayesian decision theory	178	
		5.7.1 Bayes estimators fo	or common loss functions 179	
		5.7.2 The false positive	vs false negative tradeoff 182	
		5.7.3 Other topics *	186	
		0		
6	Freq	uentist statistics 193		
	6.1	Introduction 193	Participation of the second second second	
	6.2	Sampling distribution of an	estimator 193	
		6.2.1 Bootstrap 194		
		6.2.2 Large sample theor	ry for the MLE * 195	
	6.3	Frequentist decision theory	197	
		6.3.1 Bayes risk 197		
		6.3.2 Minimax risk	98	
		6.3.3 Admissible estimat	ors 199	
	6.4	Desirable properties of estin	hators 202	
		6.4.1 Consistent estimate	ors 202	
		6.4.2 Unbiased estimator	rs 203	
		6.4.3 Minimum variance	estimators 203	
		6.4.4 The bias-variance	tradeoff 204	
	6.5	Empirical risk minimization	207	
		6.5.1 Regularized risk m	inimization 208	
		6.5.2 Structural risk min	imization 208	
		6.5.3 Estimating the risk	using cross validation 209	
		6.5.4 Upper bounding th	e risk using statistical learning theory *	21

x

- 6.5.5 Surrogate loss functions 213
- 6.6 Pathologies of frequentist statistics * 214
 - 6.6.1 Counter-intuitive behavior of confidence intervals 214

219

229

232

xi

- 6.6.2 p-values considered harmful 215
- 6.6.3 The likelihood principle 217
- 6.6.4 Why isn't everyone a Bayesian? 217

7 Linear regression 219

- 7.1 Introduction 219
- 7.2 Model specification 219
- 7.3 Maximum likelihood estimation (least squares)
 - 7.3.1 Derivation of the MLE
 - 7.3.2 Geometric interpretation 222
 - 7.3.3 Convexity 223
- 7.4 Robust linear regression * 225

7.5 Ridge regression 227

- 7.5.1 Basic idea 227
- 7.5.2 Numerically stable computation *
- 7.5.3 Connection with PCA * 230
 - 7.5.4 Regularization effects of big data
- 7.6 Bayesian linear regression 233
 - 7.6.1 Computing the posterior 234
 - 7.6.2 Computing the posterior predictive 235
 - 7.6.3 Bayesian inference when σ^2 is unknown * 236
 - 7.6.4 EB for linear regression (evidence procedure) 240

8 Logistic regression 247

247 Introduction 8.1 8.2 Model specification 247 248 8.3 Model fitting 249 8.3.1 MLE Steepest descent 8.3.2 249 8.3.3 Newton's method 251 Iteratively reweighted least squares (IRLS) 8.3.4 253 8.3.5 Quasi-Newton (variable metric) methods 253 8.3.6 ℓ_2 regularization 254 8.3.7 Multi-class logistic regression 255 Bayesian logistic regression 257 8.4 8.4.1 Laplace approximation 257 Derivation of the Bayesian information criterion (BIC) 258 8.4.2 8.4.3 Gaussian approximation for logistic regression 258 Approximating the posterior predictive 260 8.4.4 8.4.5 Residual analysis (outlier detection) * 263 Online learning and stochastic optimization 264 8.5 264 8.5.1 Online learning and regret minimization

CONTENTS

		8.5.2 Stochastic optimization and risk minimization 265	
		8.5.3 The LMS algorithm 267	
		8.5.4 The perceptron algorithm 268	
		8.5.5 A Bayesian view 270	
	8.6	Generative vs discriminative classifiers 270	
		8.6.1 Pros and cons of each approach 271	
		8.6.2 Dealing with missing data 271	
		8.6.3 Fisher's linear discriminant analysis (FLDA) * 274	
9	Gene	ralized linear models and the exponential family 283	
	9.1	Introduction 283	
	9.2	The exponential family 283	
		9.2.1 Definition 284	
		9.2.2 Examples 284	
		9.2.3 Log partition function 286	
		9.2.4 MLE for the exponential family 288	
		9.2.5 Bayes for the exponential family * 289	
		9.2.6 Maximum entropy derivation of the exponential family *	291
	9.3	Generalized linear models (GLMs) 292	
		9.3.1 Basics 292	
		9.3.2 ML and MAP estimation 294	
		9.3.3 Bayesian inference 295	
	9.4	Probit regression 295	
		9.4.1 ML/MAP estimation using gradient-based optimization	296
		9.4.2 Latent variable interpretation 296	
		9.4.3 Ordinal probit regression * 297	
		9.4.4 Multinomial probit models * 297	
	9.5	Multi-task learning 298	
		9.5.1 Hierarchical Bayes for multi-task learning 298	
		9.5.2 Application to personalized email spam filtering 298	
		9.5.3 Application to domain adaptation 299	
		9.5.4 Other kinds of prior 299	
	9.6	Generalized linear mixed models * 300	
		9.6.1 Example: semi-parametric GLMMs for medical data 3	00
		9.6.2 Computational issues 302	
	9.7	Learning to rank * 302	
		9.7.1 The pointwise approach 303	
		9.7.2 The pairwise approach 303	
		9.7.3 The listwise approach 304	
		5.1.4 Loss functions for ranking 305	
10	Dire	ted graphical models (Bayes nets) 309	
	10.1	Introduction 309	
		10.1.1 Chain rule 309	
		10.1.2 Conditional independence 310	

xii

10.1.3 Graphical models 310 10.1.4 Graph terminology 311 10.1.5 Directed graphical models 312 10.2 Examples 313 10.2.1 313 Naive Bayes classifiers 10.2.2 Markov and hidden Markov models 314 10.2.3 Medical diagnosis 315 10.2.4 Genetic linkage analysis * 317 10.2.5 320 Directed Gaussian graphical models * 10.3 Inference 321 10.4 322 Learning 10.4.1 Plate notation 322 10.4.2 Learning from complete data 324 10.4.3 Learning with missing and/or latent variables 325 10.5 Conditional independence properties of DGMs 326 10.5.1 d-separation and the Bayes Ball algorithm (global Markov properties) 326 10.5.2 Other Markov properties of DGMs 329 10.5.3 Markov blanket and full conditionals 329 10.6 Influence (decision) diagrams * 330 Mixture models and the EM algorithm 339 11 Latent variable models 339 11.1 11.2 Mixture models 339 Mixtures of Gaussians 11.2.1 341 11.2.2 Mixture of multinoullis 342 Using mixture models for clustering 11.2.3 342 11.2.4 Mixtures of experts 344 Parameter estimation for mixture models 11.3 347 Unidentifiability 348 11.3.1 11.3.2 Computing a MAP estimate is non-convex 349 The EM algorithm 11.4 350 351 11.4.1 Basic idea EM for GMMs 352 11.4.2 11.4.3 EM for mixture of experts 359 EM for DGMs with hidden variables 11.4.4 360 EM for the Student distribution * 11.4.5 361 EM for probit regression * 364 11.4.6 11.4.7 Theoretical basis for EM * 365 **Online EM** 367 11.4.8 11.4.9 Other EM variants * 369 Model selection for latent variable models 372 11.5 11.5.1 Model selection for probabilistic models 372 11.5.2 Model selection for non-probabilistic methods 372 11.6 Fitting models with missing data 374

xiii

CONTENTS

		11.6.1	EM for the MLE of an MVN with missing data 3	75	
12	Laten	t linear	models 383		
	12.1	Factor a	nalysis 383		
		12.1.1	FA is a low rank parameterization of an MVN 38	3	
		12.1.2	Inference of the latent factors 384		
		12.1.3	Unidentifiability 386		
		12.1.4	Mixtures of factor analysers 387		
		12.1.5	EM for factor analysis models 388		
		12.1.6	Fitting FA models with missing data 389		
	12.2	Principa	components analysis (PCA) 389		
		12.2.1	Classical PCA: statement of the theorem 390		
		12.2.2	Proof * 392		
		12.2.3	Singular value decomposition (SVD) 394		
		12.2.0	Probabilistic PCA 397		
		12.2.1	FM algorithm for PCA 398		
	12.3	Choosin	the number of latent dimensions 400		
	12.0	12 3 1	Model selection for FA/PPCA 400		
		12.3.1	Model selection for PCA 401		
	12.4	DCA for	categorical data 404		
	12.4	PCA for	naired and multi-view data 406		
	12.5	12.5.1	Supervised PCA (latent factor regression) 406		
		12.5.1	Partial least squares 408		
		12.5.2	Canonical correlation analysis 409		
	12.6	Indepen	edent Component Analysis (ICA) 409		
	12.0	12.6.1	Maximum likelihood estimation 412		
		12.0.1	The EastICA algorithm 413		
		12.0.2	Using FM 416		
		12.0.5	Other estimation principles * 417		
		12.0.4	Other estimation principles 417		
13	Spars	se linear	models 423		
	13.1	Introduc	ction 423		
	13.2	Bayesiar	n variable selection 424		
		13.2.1	The spike and slab model 426		
		13.2.2	From the Bernoulli-Gaussian model to ℓ_0 regularization	on 428	
		13.2.3	Algorithms 429		
	13.3	ℓ_1 regul	arization: basics 431		
		13.3.1	Why does ℓ_1 regularization yield sparse solutions?	432	
		13.3.2	Optimality conditions for lasso 434		
		13.3.3	Comparison of least squares, lasso, ridge and subset	selection	437
		13.3.4	Regularization path 438		
		13.3.5	Model selection 441		
		13.3.6	Bayesian inference for linear models with Laplace pr	iors 442	
	13.4	ℓ_1 regula	arization: algorithms 443		
		13.4.1	Coordinate descent 443		

xiv

- 13.4.2 LARS and other homotopy methods 443
- 13.4.3 Proximal and gradient projection methods 444
- 13.4.4 EM for lasso 448
- 13.5 ℓ_1 regularization: extensions 451
 - 13.5.1 Group lasso 451
 - 13.5.2 Fused lasso 456
 - 13.5.3 Elastic net (ridge and lasso combined) 457
- 13.6 Non-convex regularizers 459
 - 13.6.1 Bridge regression 460
 - 13.6.2 Hierarchical adaptive lasso 460
 - 13.6.3 Other hierarchical priors 464
- 13.7 Automatic relevance determination (ARD)/sparse Bayesian learning (SBL) 465
 - 13.7.1 ARD for linear regression 465
 - 13.7.2 Whence sparsity? 467
 - 13.7.3 Connection to MAP estimation 467
 - 13.7.4 Algorithms for ARD * 468
 - 13.7.5 ARD for logistic regression 470
- 13.8 Sparse coding * 470

Introduction

- 13.8.1 Learning a sparse coding dictionary 471
- 13.8.2 Results of dictionary learning from image patches 472
- 13.8.3 Compressed sensing 474

481

13.8.4 Image inpainting and denoising 474

14 Kernels 481

14.1

14.2	Kernel f	unctions 481
	14.2.1	RBF kernels 482
	14.2.2	Kernels for comparing documents 482
	14.2.3	Mercer (positive definite) kernels 483
	14.2.4	Linear kernels 484
	14.2.5	Matern kernels 484
	14.2.6	String kernels 485
	14.2.7	Pyramid match kernels 486
	14.2.8	Kernels derived from probabilistic generative models 487
14.3	Using ke	ernels inside GLMs 488
	14.3.1	Kernel machines 488
	14.3.2	LIVMs, RVMs, and other sparse vector machines 489
14.4	The ker	nel trick 490
	14.4.1	Kernelized nearest neighbor classification 491
	14.4.2	Kernelized K-medoids clustering 492
	14.4.3	Kernelized ridge regression 494
	14.4.4	Kernel PCA 495
14.5	Support	vector machines (SVMs) 498
	14.5.1	SVMs for regression 499
	14.5.2	SVMs for classification 500

CONTENTS

			-
	-		-
- 3			
		×.	

		14.5.3 Choosing C 506
		14.5.4 Summary of key points 506
		14.5.5 A probabilistic interpretation of SVMs 507
	14.6	Comparison of discriminative kernel methods 507
	14.7	Kernels for building generative models 509
		14.7.1 Smoothing kernels 509
		14.7.2 Kernel density estimation (KDE) 510
		14.7.3 From KDE to KNN 511
		14.7.4 Kernel regression 512
		14.7.5 Locally weighted regression 514
1	5 Gau	ssian processes 517
	15.1	Introduction 517
	15.2	GPs for regression 518
		15.2.1 Predictions using noise-free observations 519
		15.2.2 Predictions using noisy observations 520
		15.2.3 Effect of the kernel parameters 521
		15.2.4 Estimating the kernel parameters 523
		15.2.5 Computational and numerical issues * 526
		15.2.6 Semi-parametric GPs * 526
	15.3	GPs meet GLMs 527
		15.3.1 Binary classification 527
		15.3.2 Multi-class classification 530
		15.3.3 GPs for Poisson regression 533
	15.4	Connection with other methods 534
		15.4.1 Linear models compared to GPs 534
		15.4.2 Linear smoothers compared to GPs 535
		15.4.3 SVMs compared to GPs 536
		15.4.4 LIVM and RVMs compared to GPs 536
		15.4.5 Neural networks compared to GPs 537
		15.4.6 Smoothing splines compared to GPs * 538
		15.4.7 RKHS methods compared to GPs * 540
	15.5	GP latent variable model 542
	15.6	Approximation methods for large datasets 544
16	Adap	tive basis function models 545
	16.1	Introduction 545
	16.2	Classification and regression trees (CART) 546
		16.2.1 Basics 546
		16.2.2 Growing a tree 547
		16.2.3 Pruning a tree 551
		16.2.4 Pros and cons of trees 552
		16.2.5 Random forests 552

16.2.6 CART compared to hierarchical mixture of experts *

16.3 Generalized additive models 554 553

		16.3.1	Backfitting 554
		16.3.2	Computational efficiency 555
		16.3.3	Multivariate adaptive regression splines (MARS) 555
	16.4	Boosting	556
		16.4.1	Forward stagewise additive modeling 557
		16.4.2	L2boosting 559
		16.4.3	AdaBoost 560
		16.4.4	LogitBoost 561
		16.4.5	Boosting as functional gradient descent 562
		16.4.6	Sparse boosting 563
		16.4.7	Multivariate adaptive regression trees (MART) 564
		16.4.8	Why does boosting work so well? 564
		16.4.9	A Bayesian view 565
	16.5	Feedforv	vard neural networks (multilayer perceptrons) 565
		16.5.1	Convolutional neural networks 566
		16.5.2	Other kinds of neural networks 570
		16.5.3	A brief history of the field 571
		16.5.4	The backpropagation algorithm 572
		16.5.5	Identifiability 574
		16.5.6	Regularization 574
		16.5.7	Bayesian inference * 578
	16.6	Ensembl	e learning 582
		16.6.1	Stacking 582
		16.6.2	Error-correcting output codes 583
		16.6.3	Ensemble learning is not equivalent to Bayes model averaging 583
	16.7	Experim	ental comparison 584
		16.7.1	Low-dimensional features 584
		16.7.2	High-dimensional features 585
	16.8	Interpret	ing black-box models 587
17	Mark	ov and h	idden Markov models 591
	17.1	Introduc	tion 591
	17.1	Markov	models 591
	11.2	17.2.1	Transition matrix 591
		17.2.1	Application: Language modeling 593
		17.2.2	Stationary distribution of a Markov chain * 598
		17.2.3	Application: Google's PageBank algorithm for web page ranking *
	17.2	Hiddon I	Markov models 606
	17.5	17.3.1	Applications of HMMs 606
	17.4	Information	a in HMMs 608
	17.4	17.4.1	Types of inference problems for temporal models 608
		17.4.2	The forwards algorithm 611
		17.4.2	The forwards-backwards algorithm 612
		17.4.4	The Viterbi algorithm 614
		1745	Forwards filtering, backwards sampling 619
		11.1.0	TOTHING MICHING, DUCKTURED OWNERS

Learning for HMMs	619	J
-------------------	-----	---

- 17.5.1 Training with fully observed data 620
- 17.5.2 EM for HMMs (the Baum-Welch algorithm) 620
- 17.5.3 Bayesian methods for "fitting" HMMs * 622
- 17.5.4 Discriminative training 623
- 17.5.5 Model selection 623
- 17.6 Generalizations of HMMs 624
 - 17.6.1 Variable duration (semi-Markov) HMMs 624
 - 17.6.2 Hierarchical HMMs 626
 - 17.6.3 Input-output HMMs 628
 - 17.6.4 Auto-regressive and buried HMMs 628
 - 17.6.5 Factorial HMM 629
 - 17.6.6 Coupled HMM and the influence model 630
 - 17.6.7 Dynamic Bayesian networks (DBNs) 631

18 State space models 633

18.1 Introduction 633

- 18.2 Applications of SSMs 634
 - 18.2.1 SSMs for object tracking 634
 - 18.2.2 Robotic SLAM 635
 - 18.2.3 Online parameter learning using recursive least squares 638
 - 18.2.4 SSM for time series forecasting * 639
- 18.3 Inference in LG-SSM 642
 - 18.3.1 The Kalman filtering algorithm 642
 - 18.3.2 The Kalman smoothing algorithm 645
- 18.4 Learning for LG-SSM 648
 - 18.4.1 Identifiability and numerical stability 648
 - 18.4.2 Training with fully observed data 649
 - 18.4.3 EM for LG-SSM 649
 - 18.4.4 Subspace methods 649
 - 18.4.5 Bayesian methods for "fitting" LG-SSMs 649

18.5 Approximate online inference for non-linear, non-Gaussian SSMs 649

- 18.5.1 Extended Kalman filter (EKF) 650
- 18.5.2 Unscented Kalman filter (UKF) 652
- 18.5.3 Assumed density filtering (ADF) 654
- 18.6 Hybrid discrete/continuous SSMs 657
 - 18.6.1 Inference 658
 - 18.6.2 Application: data association and multi-target tracking 660
 - 18.6.3 Application: fault diagnosis 661
 - 18.6.4 Application: econometric forecasting 662

19 Undirected graphical models (Markov random fields) 663

- 19.1 Introduction 663
- 19.2Conditional independence properties of UGMs66319.2.1Key properties663

19.2.2 An undirected alternative to d-separation 665 19.2.3 Comparing directed and undirected graphical models 666 19.3 Parameterization of MRFs 667 19.3.1 The Hammersley-Clifford theorem 667 19.3.2 Representing potential functions 669 19.4 Examples of MRFs 670 Ising model 19.4.1 670 19.4.2 Hopfield networks 671 Potts model 673 19.4.3 19.4.4 Gaussian MRFs 674 19.4.5 Markov logic networks * 676 19.5 Learning 678 19.5.1 Training maxent models using gradient methods 678 19.5.2 Training partially observed maxent models 679 19.5.3 Approximate methods for computing the MLEs of MRFs 680 19.5.4 Pseudo likelihood 680 19.5.5 Stochastic maximum likelihood 682 19.5.6 682 Feature induction for maxent models * Iterative proportional fitting (IPF) * 19.5.7 684 Conditional random fields (CRFs) 686 19.6 Chain-structured CRFs, MEMMs and the label-bias problem 19.6.1 687 19.6.2 Applications of CRFs 688 19.6.3 **CRF** training 694 Structural SVMs 696 19.7 SSVMs: a probabilistic view 696 19.7.1 SSVMs: a non-probabilistic view 698 19.7.2 Cutting plane methods for fitting SSVMs 19.7.3 700 Online algorithms for fitting SSVMs 703 19.7.4 Latent structural SVMs 19.7.5 704 709 20 Exact inference for graphical models 709 Introduction 20.1 Belief propagation for trees 709 20.2 709 Serial protocol 20.2.1 20.2.2 Parallel protocol 711 Gaussian belief propagation * 20.2.3 712 Other BP variants * 714 20.2.4 The variable elimination algorithm 716 20.3 The generalized distributive law * 719 20.3.1 719 20.3.2 Computational complexity of VE A weakness of VE 722 20.3.3 722 The junction tree algorithm * 20.4 Creating a junction tree 722 20.4.1 Message passing on a junction tree 724 20.4.2 Computational complexity of JTA 727 20.4.3

CONTENTS

		20.4.4 ITA generalizations * 728	
	20.5	Computational intractability of exact inference in the worst case 728	
		20.5.1 Approximate inference 729	
21	Varia	tional inference 733	
	21.1	Introduction 733	
	21.2	Variational inference 733	
		21.2.1 Alternative interpretations of the variational objective 755	
		21.2.2 Forward or reverse KL? * 735	
	21.3	The mean field method 737	
		21.3.1 Derivation of the mean field update equations 738	
		21.3.2 Example: mean field for the Ising model 739	
	21.4	Structured mean held * 741	
	01.5	21.4.1 Example: factorial HMM 742	
	21.5	Variational Bayes 744	
		21.5.1 Example: VB for a univariate Gaussian 744	
	01.0	21.5.2 Example: VB for linear regression 740	
	21.6	Variational Bayes EM 751	
	21.7	Veriational massage passing and VIRES 758	
	21.7	Local variational bounds * 758	
	21.0	21.8.1 Motivating applications 758	
		21.8.2 Bohning's quadratic bound to the log-sum-exp function 760	
		21.8.3 Bounds for the sigmoid function 762	
		21.8.4 Other bounds and approximations to the log-sum-exp function * 7	6
		21.8.5 Variational inference based on upper bounds 765	Ĭ
22	More	variational inference 769	
	22.1	Introduction 769	
	22.2	Loopy belief propagation: algorithmic issues 769	
		22.2.1 A brief history 769	
		22.2.2 LBP on pairwise models 770	
		22.2.3 LBP on a factor graph 771	
		22.2.4 Convergence 773	
		22.2.5 Accuracy of LBP 776	
		22.2.6 Other speedup tricks for LBP * 777	
	22.3	Loopy belief propagation: theoretical issues * 778	
		22.3.1 UGMs represented in exponential family form 778	
		22.3.2 The marginal polytope 779	
		22.3.3 Exact inference as a variational optimization problem 780	
		22.3.4 Weath field as a variational optimization problem 781	
		22.3.5 Lor as a variational optimization problem 781	
	22.4	Extensions of helief propagation * 705	
	22.4	22.4.1 Generalized belief propagation 705	
		Lenia ocheranized bener propagation (65	

XX

	22.4.2 Convex belief propagation 787			
22.5	Expectation propagation 789			
	22.5.1 EP as a variational inference problem 790			
	22.5.2 Optimizing the EP objective using moment matching 791			
	22.5.3 EP for the clutter problem 793			
	22.5.4 LBP is a special case of EP 794			
	22.5.5 Banking players using TrueSkill 795			
	22.5.6 Other applications of EP 801			
22.6	MAP state estimation 801			
	22.6.1 Linear programming relaxation 801			
	22.6.2 Max-product belief propagation 802			
	22.6.3 Graphcuts 803			
	22.6.4 Experimental comparison of graphcuts and BP 806			
	22.6.5 Dual decomposition 808			
Man	to Carda information 017			
Mon	te Carlo injerence 817			
23.1	Introduction 817			
23.2	Sampling from standard distributions 817			
	23.2.1 Using the cdf 817			
	23.2.2 Sampling from a Gaussian (Box-Muller method) 819			
23.3	Rejection sampling 819			
	23.3.1 Basic idea 819			
	23.3.2 Example 820			
	23.3.3 Application to Bayesian statistics 821			
	23.3.4 Adaptive rejection sampling 821			
	23.3.5 Rejection sampling in high dimensions 822			
23.4	Importance sampling 822			
	23.4.1 Basic idea 822			
	23.4.2 Handling unnormalized distributions 823			
	23.4.3 Importance sampling for a DGM: likelihood weighting 824			
00.5	23.4.4 Sampling importance resampling (SIR) 825			
23.5	Particle intering 625			
	23.5.1 Sequential importance sampling 626			
	23.5.2 The recompling stop 927			
	23.5.5 The resampling step 627			
	23.5.4 The proposal distribution 625			
	23.5.5 Application: robot localization 650			
	23.5.7 Application: time series forecasting 833			
22.6	Rao Blackwallised particle filtering (DRDE) 823			
25.0	23.6.1 RBPE for switching I.G.SSMe 833			
	23.6.2 Application: tracking a maneuvering target 834			
	23.6.3 Application: East SLAM 836			
	color approaction rust offante off			

24 Markov chain Monte Carlo (MCMC) inference 839

.

	2/1	Introduct	ion 920
	24.1	Cibbs ser	10n 659
	24.2	GIDDS Sal	Recipited 940
		24.2.1	Dasic Idea 040
		24.2.2	Example: Globs sampling for inforring the parameters of a GMM 84
		24.2.3	Example: Gibbs sampling for interning the parameters of a sampling for interning the parameters of a sampling the parameters of a sa
		24.2.4	Collapsed Gibbs sampling 645
		24.2.5	Gibbs sampling for hierarchical GLMs 040
		24.2.6	BUGS and JAGS 848
		24.2.7	The Imputation Posterior (IP) algorithm 645
		24.2.8	Blocking Gibbs sampling 849
	24.3	Metropol	is Hastings algorithm 850
		24.3.1	Basic idea 850
		24.3.2	Gibbs sampling is a special case of MH 851
		24.3.3	Proposal distributions 852
		24.3.4	Adaptive MCMC 855
		24.3.5	Initialization and mode hopping 856
		24.3.6	Why MH works * 856
		24.3.7	Reversible jump (trans-dimensional) MCMC * 857
	24.4	Speed an	nd accuracy of MCMC 858
		24.4.1	The burn-in phase 858
		24.4.2	Mixing rates of Markov chains * 859
		24.4.3	Practical convergence diagnostics 860
		24.4.4	Accuracy of MCMC 862
		24.4.5	How many chains? 864
	24.5	Auxiliary	variable MCMC * 865
		24.5.1	Auxiliary variable sampling for logistic regression 865
		24.5.2	Slice sampling 866
		24.5.3	Swendsen Wang 868
		24.5.4	Hybrid/Hamiltonian MCMC * 870
	24.6	Annealin	g methods 870
		24.6.1	Simulated annealing 871
		24.6.2	Annealed importance sampling 873
		24.6.3	Parallel tempering 873
	24.7	Approxin	nating the marginal likelihood 874
		24.7.1	The candidate method 874
		24.7.2	Harmonic mean estimate 874
		24.7.3	Annealed importance sampling 875
25	Clust	ering	877
	25.1	Introduct	tion 877
		25.1.1	Measuring (dis)similarity 877
		25.1.2	Evaluating the output of clustering methods to an
	25.2	Dirichlet	process mixture models 881
		25.2.1	From finite to infinite mixture models
		25.2.2	The Dirichlet process 884

		25.2.3 Applying Dirichlet processes to mixture modeling	887
		25.2.4 Fitting a DP mixture model 888	
	25.3	Affinity propagation 889	
	25.4	Spectral clustering 892	
		25.4.1 Graph Laplacian 893	
		25.4.2 Normalized graph Laplacian 894	
		25.4.3 Example 895	
	25.5	Hierarchical clustering 895	
		25.5.1 Agglomerative clustering 897	
		25.5.2 Divisive clustering 900	
		25.5.3 Choosing the number of clusters 901	
		25.5.4 Bayesian hierarchical clustering 901	
	25.6	Clustering datapoints and features 903	
		25.6.1 Biclustering 905	
		25.6.2 Multi-view clustering 905	
	0		
26	Grapi	hical model structure learning 909	
	26.1	Introduction 909	
	26.2	Structure learning for knowledge discovery 910	
		26.2.1 Relevance networks 910	
		26.2.2 Dependency networks 911	
	26.3	Learning tree structures 912	
		26.3.1 Directed or undirected tree? 913	
		26.3.2 Chow-Liu algorithm for finding the ML tree structure	914
		26.3.3 Finding the MAP forest 914	
		26.3.4 Mixtures of trees 916	
	26.4	Learning DAG structures 916	
		26.4.1 Markov equivalence 916	
		26.4.2 Exact structural inference 918	
		26.4.3 Scaling up to larger graphs 922	
	26.5	Learning DAG structure with latent variables 924	1.0.12
		26.5.1 Approximating the marginal likelihood when we have	missing data
		26.5.2 Structural EM 927	
		26.5.3 Discovering hidden variables 928	
		26.5.4 Case study: Google's Rephil 930	
		26.5.5 Structural equation models * 931	
	26.6	Learning causal DAGs 933	
		26.6.1 Causal interpretation of DAGs 933	
		26.6.2 Using causal DAGs to resolve Simpson's paradox 93	35
		26.6.3 Learning causal DAG structures 938	
	26.7	Learning undirected Gaussian graphical models 940	
		26.7.1 MLE for a GGM 940	
		26.7.2 Graphical lasso 941	
		0.000 0 0.000 0.000 0.000 0.000	

26.7.3

Bayesian inference for GGM structure *943Handling non-Gaussian data using copulas *944 26.7.4

	26.8	Learning undirected discrete graphical models94426.8.1Graphical lasso for MRFs/CRFs944
		26.8.2 Thin junction trees 945
27	Later	at variable models for discrete data 949
	27.1	Introduction 949
	27.2	Distributed state LVMs for discrete data 950
		27.2.1 Mixture models 950
		27.2.2 Exponential family PCA 951
		27.2.3 LDA and mPCA 952
		27.2.4 GaP model and non-negative matrix factorization 953
	27.3	Latent Dirichlet allocation (LDA) 954
		27.3.1 Basics 954
		27.3.2 Unsupervised discovery of topics 957
		27.3.3 Quantitatively evaluating LDA as a language model 957
		27.3.4 Fitting using (collapsed) Gibbs sampling 959
		27.3.5 Example 960
		27.3.6 Fitting using batch variational interence 961
		27.3.7 Fitting using online variational inference 963
		27.3.8 Determining the number of topics 964
	27.4	Extensions of LDA 965
		27.4.1 Correlated topic model 965
		27.4.2 Dynamic topic model 966
		27.4.3 LDA-HMM 967
		27.4.4 Supervised LDA 971
	27.5	LVMs for graph-structured data 574
		27.5.1 Stochastic block model 977
		27.5.2 Relational tonic model 978
	27.6	WMs for relational data 979
	21.0	27.6.1 Infinite relational model 980
		27.6.2 Probabilistic matrix factorization for collaborative filtering 983
	277	Restricted Boltzmann machines (RBMs) 987
	21.1	27.7.1 Varieties of RBMs 989
		27.7.2 Learning RBMs 991
		27.7.3 Applications of RBMs 995
2	8 Dee	n learning 999
2	20.1	Introduction 999
	28.1	Deep generative models 999
	20.2	28.2.1 Deep directed networks 1000

- 28.2.2 Deep Boltzmann machines 1000
- 28.2.3 Deep belief networks 1001
- 28.2.4 Greedy layer-wise learning of DBNs 1002
- 28.3 Deep neural networks 1003

xxiv

28.3.2 Deep auto-encoders 1004

28.3.3 Stacked denoising auto-encoders 1005

28.4 Applications of deep networks 1005

- 28.4.1 Handwritten digit classification using DBNs 1005
- 28.4.2 Data visualization and feature discovery using deep auto-encoders 1006
- 28.4.3 Information retrieval using deep auto-encoders (semantic hashing) 1007
- 28.4.4 Learning audio features using 1d convolutional DBNs 1008

28.4.5 Learning image features using 2d convolutional DBNs 1009

28.5 Discussion 1010

Notation 1013

Bibliography 1019

Indexes 1051

Index to code 1051 Index to keywords 1054

Preface

Introduction

With the ever increasing amounts of data in electronic form, the need for automated methods for data analysis continues to grow. The goal of machine learning is to develop methods that can automatically detect patterns in data, and then to use the uncovered patterns to predict future data or other outcomes of interest. Machine learning is thus closely related to the fields of statistics and data mining, but differs slightly in terms of its emphasis and terminology. This book provides a detailed introduction to the field, and includes worked examples drawn from application domains such as molecular biology, text processing, computer vision, and robotics.

Target audience

This book is suitable for upper-level undergraduate students and beginning graduate students in computer science, statistics, electrical engineering, econometrics, or anyone else who has the appropriate mathematical background. Specifically, the reader is assumed to already be familiar with basic multivariate calculus, probability, linear algebra, and computer programming. Prior exposure to statistics is helpful but not necessary.

A probabilistic approach

This books adopts the view that the best way to make machines that can learn from data is to use the tools of probability theory, which has been the mainstay of statistics and engineering for centuries. Probability theory can be applied to any problem involving uncertainty. In machine learning, uncertainty comes in many forms: what is the best prediction (or decision) given some data? what is the best model given some data? what measurement should I perform next? etc.

The systematic application of probabilistic reasoning to all inferential problems, including inferring parameters of statistical models, is sometimes called a Bayesian approach. However, this term tends to elicit very strong reactions (either positive or negative, depending on who you ask), so we prefer the more neutral term "probabilistic approach". Besides, we will often use techniques such as maximum likelihood estimation, which are not Bayesian methods, but certainly fall within the probabilistic paradigm.

Rather than describing a cookbook of different heuristic methods, this book stresses a principled model-based approach to machine learning. For any given model, a variety of algorithms can often be applied. Conversely, any given algorithm can often be applied to a variety of models. This kind of modularity, where we distinguish model from algorithm, is good pedagogy and good engineering.

We will often use the language of graphical models to specify our models in a concise and intuitive way. In addition to aiding comprehension, the graph structure aids in developing efficient algorithms, as we will see. However, this book is not primarily about graphical models; it is about probabilistic modeling in general.

A practical approach

Nearly all of the methods described in this book have been implemented in a MATLAB software package called PMTK, which stands for probabilistic modeling toolkit. This is freely available from pmtk3.googlecode.com (the digit 3 refers to the third edition of the toolkit, which is the one used in this version of the book). There are also a variety of supporting files, written by other people, available at pmtksupport.googlecode.com. These will be downloaded automatically, if you follow the setup instructions described on the PMTK website.

MATLAB is a high-level, interactive scripting language ideally suited to numerical computation and data visualization, and can be purchased from www.mathworks.com. Some of the code requires the Statistics toolbox, which needs to be purchased separately. There is also a free version of Matlab called Octave, available at http://www.gnu.org/software/octave/, which supports most of the functionality of MATLAB. Some (but not all) of the code in this book also works in Octave. See the PMTK website for details.

PMTK was used to generate many of the figures in this book; the source code for these figures is included on the PMTK website, allowing the reader to easily see the effects of changing the data or algorithm or parameter settings. The book refers to files by name, e.g., naiveBayesFit. In order to find the corresponding file, you can use two methods: within Matlab you can type which naiveBayesFit and it will return the full path to the file; or, if you do not have Matlab but want to read the source code anyway, you can use your favorite search engine, which should return the corresponding file from the pmtk3.googlecode.com website.

Details on *how to use* PMTK can be found on its website. Details on the *underlying theory* behind these methods can be found in this book.

Acknowledgments

A book this large is obviously a team effort. I would especially like to thank the following people: my wife Margaret, for keeping the home fires burning as I toiled away in my office for the last six years; Matt Dunham, who created many of the figures in this book, and who wrote much of the code in PMTK; Baback Moghaddam (RIP), who gave extremely detailed feedback on every page of an earlier draft of the book; Chris Williams, who also gave very detailed feedback; Cody Severinski and Wei-Lwun Lu, who assisted with figures; generations of UBC students, who gave helpful comments on earlier drafts; Daphne Koller, Nir Friedman, and Chris Manning, for letting me use their latex style files; Stanford University, Google Research and Skyline College for hosting me during part of my sabbatical; and various Canadian funding agencies (NSERC, CRC and CIFAR) who have supported me financially over the years.

In addition, I would like to thank the following people for giving me helpful feedback on

Preface

parts of the book, and/or for sharing figures, code, exercises or even (in some cases) text: David Blei, Sebastien Bratieres, Hannes Bretschneider, Greg Corrado, Jutta Degener, Arnaud Doucet, Mario Figueiredo, Nando de Freitas, Mark Girolami, Gabriel Goh, Tom Griffiths, Katherine Heller, Geoff Hinton, Aapo Hyvarinen, Tommi Jaakkola, Mike Jordan, Charles Kemp, Emtiyaz Khan, Bonnie Kirkpatrick, Daphne Koller, Zico Kolter, Honglak Lee, Julien Mairal, Andrew McPherson, Tom Minka, Ian Nabney, Robert Piche, Arthur Pope, Carl Rassmussen, Ryan Rifkin, Ruslan Salakhutdinov, Mark Schmidt, Daniel Selsam, David Sontag, Erik Sudderth, Josh Tenenbaum, Martin Wainwright, Yair Weiss, Kai Yu.

Kevin Patrick Murphy Palo Alto, California June 2012

First printing: August 2012 Second printing: November 2012 (same as first) Third printing: February 2013 (fixed some typos) Fourth printing: August 2013 (fixed many typos)